미국초음파자격시험 산부인과


미국초음파자격 물리 시험 (SPI) 본 지 딱 일주일만에

산부인과 시험을 보고 왔다.


미국초음파자격시험 공부


아마존에서 SPI 에 이어 산 문제집.

단 한권을 열흘동안 공부했다.

문제에 있는 이미지 quality 도 많이 떨어지고 (모든 이미지가 그런 것은 아니지만)

문제도 논란의 여지가 있을 수 있는 것들이 있어

불만족스러웠지만 시간 관계상 또

다른 좋은 study material 을 알지 못해 이것만 봤다.


시험을 보면서 느낀 점은

위 문제집을 '족보'라고 치면

시험은 '탈족' 이라는 것. #분노


혹시나 당황할까봐 PACSIM 이라는 문제에 대한 예시 동영상을 보고 갔다.



정작 시험을 봐보니

이미지 quality 도 문제의 quality 도 모두 정상적이었다.


미국초음파자격시험 합격수기


물리 문제도 출제되기 때문에

힘들지만 SPI 시험을 친 뒤 다음 시험 간격을 최소화하는 것도

좋은 성적을 받는 방법일 것 같다.


2018/09/05 - [Ultrasonography] - [ARDMS] SPI 후기





2018. 3. ARDMS 도전하기로 마음을 먹고 공증서류를 준비

2018. 4. 공증서류를 받아 APCA에 보내고 약 한 달이 지나서

2018. 6. APCA 에서 confirmation letter를 받았다.


시험일은 APCA 컨펌이 끝나면 천천히 잡을 수 있는 것이라 생각하고 공부를 거의 안하고 있었는데

컨펌일로부터 3개월 이내에 시험을 보라는 공지에 3개월의 마지막 기한인 오늘, 시험을 보고 왔다.


미국초음파자격시험 합격수기

(목걸이도 돌아가고 아주 정신이 없었던 모양)


미국초음파자격시험 합격 후기

1. The beginning


행복한 인생을 위한 '저공비행'이 인생모토이기 때문에

저비용 고효율을 위한 공부 (즉 벼락치기)를 하는 편이다.

내가 원하는 건 '합격' 그 이상은 절대 아니었다. 


2. Study materials


아마존에 ARDMS SPI 로 검색을 해서, 사용자들의 평을 검토한 뒤

그들이 평에서 언급한 다른 책들 (Edelman 등)도 검색을 해보고

나에게 가장 맞을 것 같은 Davies 로 결정하고 주문했다. 

(도착하는데 2주 걸림... 그 때 아마존 프라임이 아니어서...)


davies ultrasound physics


총 600 문제 (정확히는 598?)가 있다. 

앞 부분은 문제, 뒷 부분은 해설로 구성이 되어 있는데

처음 받아봤을 때는 내용 리뷰가 전혀 안되어 있어서 (책도, 나도) 

문제를 풀고, 정답을 맞추었든 아니든 상관없이 모든 해설 내용을 읽고 정리했다.

중간 중간, 해설이 부족한 부분은 내가 사랑하는 구글을 찾아들어가 구글링 및 유튜브 동영상을 사용했다.


3. Study period


시험 신청하는 기간동안 (즉, 약 4개월 동안) 문제집을 다 풀었다.

여행도 다니고, 제빵놀이도 하느라 사실 매일 공부한 것도 아니었지만

한 번 공부할 때는 집중모드로.


시험 날짜를 정하고 한 달 정도는 석사학위 논문 심사를 위해 비워두었고

쉬엄쉬엄 공부하다 마지막 2주동안에는 하루에 5-6시간은 공부한 것 같다. 


2독이랄 것도 없는, 문제풀면서 정리한 것을 정리하는데 1주일.

문제를 한 번 더 푸는데 1주일.


시험보기 전날 하루종일 600문제 어지러울 때까지 풀어보았다.


4. Before the test


AIT-SIC 라고, 책에서는 '이런 유형의 문제다'라는 언급만 있었던 문제가 늘 걱정이 됐었다.

어느덧 '옛날사람'이 된 나인데, 컴퓨터 앞에서 당황을 하면 어쩌나.. 시험 전 날 정말 쭈구리의 심정이었다.


잠들기 전 혹시 도움이 될만한게 있을까 싶어 유튜브를 검색해 보았다.




이 선생님은 시험을 어떻게 보면 되는지를 알려주고 있다.

내가 시험을 보면서 느낀 것은, 비슷한 내용을 다루는 문제가 있었고, 이를 왔다 갔다 검토하다 보면 기억이 나지 않았던 부분들을 끼워맞출 수 있고

문제를 '정답이라고 확신하고' 풀 수 있는 문제들도 있었다.


정답 보기에 다른용어이지만 같은 뜻을 포함하는 것이 있다면 그 둘은 정답이 아닐 확률이 높아지는 것이라는 것도

시험을 보면서 도움이 되었다.




이 동영상은 AIT-SIC 문제에 대한 간접경험을 해볼 수 있는 동영상이었다.

걱정했던 것보다 SIC 문제들이 어렵게 느껴지지는 않았다.

문제를 읽고, 이미지를 본 뒤 바로 떠오르는 것이 보통은 콘솔 안에 있었다.


4. 


성취에 의한 행복은 정말 찰나에 불과한 것 같다.

합격 확인서를 받아들고 해처럼 빛나게 웃으며 나와 차에 탐과 동시에 평정심.

먹을 때가 가장 행복하다.




다음은 SPI 공부하면서 정리한 것이다.

[★]친 것은 Davies 문제집에서 많이 나왔던 문제이고

이 부분만 확실히 알아도 합격 자체에는 문제 없을 것 같다.


2018/08/30 - [Ultrasonography] - [Ultrasound Physics] GENERAL TERMS

2018/08/31 - [Ultrasonography] - [Ultrasound Physics] COMPONENTS OF ULTRASOUND

2018/08/31 - [Ultrasonography] - [Ultrasound Physics] SOUND BEAM

2018/09/01 - [Ultrasonography] - [Ultrasound Physics] SOUND WAVES

2018/09/01 - [Ultrasonography] - [Ultrasound Physics] TYPES OF INCIDENCE

2018/09/01 - [Ultrasonography] - [Ultrasound Physics] TRANSDUCERS AND ARRAYS

2018/09/01 - [Ultrasonography] - [Ultrasound Physics] DOPPLER

2018/09/02 - [Ultrasonography] - [Ultrasound Physics] HEMODYNAMICS

2018/09/02 - [Ultrasonography] - [Ultrasound Physics] IMAGE PROCESSING

2018/09/03 - [Ultrasonography] - [Ultrasound Physics] REFLECTORS

2018/09/03 - [Ultrasonography] - [Ultrasound Physics] RESOLUTION

2018/09/03 - [Ultrasonography] - [Ultrasound Physics] ARTIFACTS

2018/09/03 - [Ultrasonography] - [Ultrasound Physics] OTHERS important for SPI ARDMS


[ARDMS] 미국초음파자격시험에 도전해보기로 했다

미국초음파자격시험기관


ARDMS (American Registered Diagnostic Medical Sonographer)

산부인과 의사로 초음파 보는 것은 가능하고 어느정도 지식도 있기 때문에, 혹시라도 미국에서 취직의 기회가 있지는 않을까 하여 준비해보기로 했다.

구글링으로 얼핏 살펴본 결과, 준비할 문서가 많아 우선 ARDMS 에 대해 살펴보기로 한다.


ARDMS 에서 받을 수 있는 자격증은 크게 4가지이다.


1) RDMS (Registered Diagnostic Medical Sonographer)


2) RDCS (Registered Diagnostic Cardiac Sonographer)


3) RVT (Registered Vascular Technologist)


4) RMSKS (Registered Musculoskeletal Sonographer)


이 중 나는 일반적인 RDMS 에 대한 자격을 취득할 목표이기 때문에 이에 대해서만 살펴본다.


자격을 얻기 위해 크게는 2가지의 시험을 통과해야 한다.


1) SPI (Sonography Principles & Instrumentation)

- 초음파 물리에 대한 시험이다.


2) Corresponding specialty examinations (Abdomen / Breast / Fetal Echocardiography / Obstetrics & Gynecology / Pediatric Sonography)

- 복부, 유방, 태아심초음파, 산부인과 등 세부 전공을 선택해야 한다.


이 두가지 시험은 5년 내에 합격을 해야 하는 Five-Year Rule 이 적용된다.


Eligibility, 시험 자격요건


우선 Eligibility, 시험 자격요건을 충족해야 한다. 


물리시험인 SPI 의 경우 졸업 이전의 학생도 지원할 수 있어 자격조건이 적은 반면, specialty exam 의 자격요건은크게 다섯가지가 있다. 

General prerequisite PDF 파일을 보면, SPI를 지원할 때 specialty exam 의 자격요건으로 지원하는 것을 추천한다고 되어 있다 

(If the SPI examination is your first ARDMS examination (excluding PVI and MSK), please note: those who can fully meet an existing ARDMS prerequisite are strongly encouraged to apply under that prerequisite, as  future application processing will be faster and easier.) 


나의 경우는 Prerequisite 4B1 (MD outside US or Canada)에 해당하므로 이에 대해 알아보기로 한다.


1. 교육 : MD 이고 Residency 를 마쳤다.


2. 임상 초음파 경험 : 지원 분야에서 최소 800 건 이상의 임상경험이 있을 것 - 매우 충족.


3. 필요한 문서


1) Medical Degree : 미국의 학위에 해당하는 학위가 필요하다. 

미국 이외에서 받은 학위에 대한 공증이 필요하고, ARDMS 사이트에는 몇 군데 기관이 소개되어 있다.


+ ECFMG 에서 내가 졸업한 의과대학을 인정하고 있기 때문에, 이로써 충분한지를 ARDMS 측에 문의해보았다. 

USMLE step 3까지 통과한 것이 아닌 이상 international degree 는 무조건 공증을 받아야 한다고 하였다.


+ 위에 링크를 걸어둔 기관 중 나는 가장 저렴($85+10불 우편료인가 추가)하면서 가장 빨리 진행되는 것 같은 ECE 라는 기관에 부탁했다.


+ ECE 뿐만 아니라 대부분의 기관에서 '학교 직인이 찍힌 봉투에 sealed' 되어진 문서(졸업증명서, 성적증명서)를 요구하기 때문에 조금 번거로웠다. 

그래도 미국에 있으면서 미국사람들이 진행하는 것보다, 미국에 있으면서 한국에 요청하는 것이 더 빠르다. 대한민국 만세.


2) 레지던트 프로그램 디렉터로부터 최소 800 건의 초음파를 시행했음을 증명하는 레터 : 형식을 다운받을 수 있다.


3) Clinical verification (CV) : 해당하는 specialty exam 마다 작성해야 하고, 형식을 다운받을 수 있다.


4) 800 건의 초음파 시행 기록 (patient log)이 있어야 한다 : 전공의수첩이 쓸데없는 것만은 아니었다. 해당 자료는 제출용은 아니지만 무작위로 요청할 수 있기 때문에 최소 3년동안은 보관해야 한다고 한다.


5) 정부에서 발행한 ID 복사본



원서접수 비용


1) SPI : $225


2) Specialty examination : OB/GYN $250

이는 processing fee $100가 포함된 가격으로 100은 환불되지 않는다고 함. 당연.



후기 참고


2018/09/05 - [Ultrasonography] - [ARDMS] SPI 후기


2018/09/12 - [Ultrasonography] - [ARDMS] Ob/Gyn 합격 후기


'Ultrasonography' 카테고리의 다른 글

[ARDMS] Ob/Gyn 합격 후기  (1) 2018.10.14
[ARDMS] SPI 후기  (0) 2018.10.07
[Ultrasound Physics] OTHERS important for SPI ARDMS  (1) 2018.09.03
[Ultrasound Physics] ARTIFACTS  (0) 2018.09.03
[Ultrasound Physics] RESOLUTION  (0) 2018.09.03


[Contents]

1. Patient Care, Safety, and Communication

2. Physics principles

3. Pulse-Echo Instrumentation

4. Quality Assurance/Quality Control of Equipment



1. Patient Care, Safety, and Communication


* ALARA principle (as low as reasonably achievable) [★]

- time, distance, shielding

- Complete diagnostic scan in a timely fashion at lowest output power that achieves a quality image

- Use the lowest transmit power that allows adequate tissue visualization

 

* Transmit power [★]

- Affect the exposure of the patient to acoustic power

- ↑ transmit power

: penetration ↑

: Acoustic power ↑, voltage applied to transducer elements ↑

: Image brightness ↑

 

* Bioeffect through absorption of sound energy by tissue [★★]

- Heating

: Tissue heating occurs when transmit power increases

 

* Nosocomial infection = hospital-acquired

- To avoid nosocomial & cross infection

: probe cleaning should always precede high-level disinfection

: covering probe with condom alone is insufficient

: disinfection using germicide compatible with the transducer

- When probe is in contact with mucous membranes

- Alcohol wipes are not recommended by manufacturers

: Alcohol degrade the transducer surface over time

 

* Mechanical index (MI)

- Method to evaluate bioeffect of US beam

 - Associated with onset of cavitation

 

* Thermal index (TI) [★]

- Power needed to increase tissue temperature by 1⁰C (Estimated temperature increase in tissue)

- TI > 1: Limit exposure time

- TI = 1: temperature could increase 1⁰C if transducer were held stationary

- most likely: bone (absorber)

- To avoid thermally induced biologic effects

: Avoid local tissue temperature increase exceeding 1⁰C

 

* Advantage of MI, TI

- Information available on screen to help sonographer implement ALARA principle

 

* Hydrophone

- Small needle with crystal at end

- Measure: amplitude (acoustic pressure), period, pulse duration (PD), PRP, PRF, duty factor (DF)

- Cannot measure: impedance

 

* String test object

- Evaluate doppler accuracy

 

* Acoustic streaming

- Acoustically generated transport of fluid within the body of insonated fluid/tissue

- Mechanical interaction of tissue and sound

- Motion of particles in a fluid observed in an intense US beam


2. Physics principles


* Purpose of gel coupling between transducer and skin

- To provide a medium for sound transmission, since US does not propagate through air

 

* Diffraction [★]

- General term for various phenomena in which waves from different parts of a source add or subtract

- ex) Pattern produced by a sound beam after passing through a small aperture

 

* When Image does not show adequate penetration, show noise in far field

- Decrease ultrasound transmit frequency [★★]

- Increase acoustic output

- Move focal zone to deeper position

 

* Doppler pulsed used for diagnostic purposes

- 5-30 cycles long


3. Pulse-Echo Instrumentation


* Tissue harmonics [★★]

1) Harmonic of transmitted frequency is used to create image

2) Harmonic frequency of transmitted pulse is generated within the body

- Selective reception of frequencies that are higher than that of transmitted frequency

generated within the body by nonlinear propagation

- Produces thinner beam

3) Advantage of Tissue harmonic imaging [★★]

- Grating lobe artifacts are reduced

               : improved contrast resolution

                              - contrast resolution is always improved by increasing frequency

                              - harmonics always result in use of higher frequency

                              - harmonics reduce clutter and side lobe artifacts

- lateral resolution is improved

- increase visualization of reflections from blood flow on real-time US image

 

* Signal-to-noise ratio

= relative amplitude of the signal compared to the amplitude of the noise

 

* Volume data set

1) Advantage

- Can be manipulated to show an infinite number of imaging planes with many different images

2) May be obtained by

- a freehand sweep of the probe over the anatomy

- an automated sweep of the transducer within the probe

3) Automated 3-D sweeps can be obtained with specially designed mechanical/electric transducers

- Advantage: Measurements can be accurately obtained

               (the distance of sweep is known)

 

* Cine loop

- Allows user to freeze and then scroll back through the most recently acquired image frames

 

* 3D imaging

1) Advantage [★★]

- Most helpful to obtain accurate anatomic volume measurements

- Ability to display image planes (coronal plane) impossible to obtain with 2D imaging

- Ability to display orthogonal planes simultaneously

2) volume rate: # of volumes displayed per second

3) Voxel

- smallest element of a 3-dimensional volume (3-dimensional pixel element)

- analogous to pixel in 2D imaging

 

* 4D imaging

- 3D imaging with addition of time

 

*

- Isotropic resolution: spatial resolution is equal in all planes

- Anisotropic resolution: unequal resolution between imaging planes

 

* Magnetic field tracking

1) Successful method of obtaining 3D data set

2) Based on a six degree-of-freedom magnetic field sensor

3) requirements for 3D reconstruction

- electromagnetic interference must be minimized

- transmitter must be in close proximity to receiver

- ferrous metals must not be within electromagnetic field

 

* DICOM (Digital Imaging and Communications in Medicine) [★]

- Standard for handling and transferring images and medical information

1) Query/Retrieve

- DICOM feature to recall a previous DICOM study onto system for viewing

2) Worklist

- DICOM feature to select patient name and automatically populate patient information on system.

3) Sonographic images are compressed before sending to PACS

- To reduce time to transmit the image

4) PACS (Picture Archive and Communication System)

- System commonly used to handle the archiving and electronic distribution of sonographic images

               (using a DICOM format)

 

* Advantage of Modality worklist

- Avoiding the need to type patient information

- Reducing patient information error

- Speeding up patient preparation time

- Easily confirming patient information

 

* Pulse inversion harmonics

1) Effective method to filter out fundamental frequency (transmitted frequency)

- leave only the harmonic frequencies for display

2) Uses two pulses of opposite polarity transmitted into the tissue in rapid succession

- The received echoes from the pulses are added together

- Cancels out the transmitted frequency, leaving the harmonics that were generated within tissue

 

* Cardiac output

- volume of blood pumped by the heart per minute

 

* Vessel wall layers

vessel wall layers 

- Intima

: Single layer of cells backed by a thin layer of elastin and collagen fibers

               : atherosclerotic disease begins as a fatty streak within intima

- Media: contains smooth muscle fibers

 

* Rouleaux formation

- Stacking up of RBCs that occurs at low velocities and low shear rates

- Produces larger echo: blood flow may be visible

- velocity ↑ → rouleaux formation breaks up


4. Quality Assurance/Quality Control of Equipment


* SMPTE (Society of Motion Picture and Television Engineers) test pattern

- Standard pattern for evaluation of monitors and cameras

- Purpose: to aid in the setup and quality assurance of displays and cameras

 

* Quality control

1) system penetration

2) image uniformity

3) assurance of electric safety

4) distance measurement accuracy

 

* Dead zone

ultrasound dead zone 

- distance from the transducer to the first identifiable echo

 

* sensitivity

- ability of the system to detect weak echoes

 

* transducers can be cleaned with

- soap and water

- ultraviolet light or radiation

- autoclave

- gas

- not) cidex, acetone, iodine, betadine, bleach

- Glutaraldehyde: commonly recommended ingredient in cleansers for intracavitary probes

 

Reference

 

* Davies Ultrasound Physics review

* https://sites.google.com/site/lindadmsportfolio/ultrasound-physics/

* https://sites.google.com/site/nataljasultrasoundphysics/

* https://sites.google.com/site/ektasphysicseportfolio/doppler


'Ultrasonography' 카테고리의 다른 글

[ARDMS] SPI 후기  (0) 2018.10.07
[ARDMS] 미국초음파자격시험에 도전해보기로 했다  (4) 2018.09.21
[Ultrasound Physics] ARTIFACTS  (0) 2018.09.03
[Ultrasound Physics] RESOLUTION  (0) 2018.09.03
[Ultrasound Physics] REFLECTORS  (0) 2018.09.03


[Contents]

1. Artifacts

2. Resolution Artifacts

3. Propagating Speed/Path Artifacts

4. Attenuation Artifacts

5. Doppler Artifacts



1. Artifacts


1) Any unintended information on an image that does not represent the object

2) Artifacts can be a hindrance or in some cases may be diagnostically helpful

3) Basic Assumptions

- There are several assumptions made by an ultrasound machine

- Artifacts occur when these assumptions are violated

1. Sound travels in a straight line

2. Reflections are produced by structures along the beams main axis

3. Sound travels at exactly 1540 m/s

4. Intensity of a reflection directly corresponds to a reflector’s scattering strength

5. The imaging plane is very thin

6. Sound beams travel directly to a reflector and back to source


2. Resolution Artifacts


1) Axial resolution artifact [★]

- Closely spaced targets of varying distances

 

axial resolution artifact 

 

- Axial Resolution

: Ability to differentiate between two objects along the long axis of the ultrasound beam

= SPL/2

- Axial Resolution Artifacts appear when all 3 conditions occur:

1. Two or more reflectors are closer together than SPL/2

2. Only one reflector will appear on the image

3. Reflectors are parallel to the beam axis

- Hindrance

: Produce fewer reflectors on the image

: Actual anatomic data is missing

- Prevention

: by using higher frequency transducers with short distinct pulses

 

2) Lateral Resolution Artifact [★★]

- Measuring lateral width of a target on an ultrasound phantom

lateral resolution artifact

 

- Lateral Resolution

: Ability to differentiate between two objects that lie perpendicular to the ultrasound   beam

= beam width

- Lateral Resolution Artifacts appear when all 3 conditions occur:

1. Two or more reflectors are closer together than the width of the beam

2. Only one reflector will appear on the image

3. Reflectors are perpendicular to the beam axis

- Hindrance

: Produce fewer reflectors on the image

: Actual anatomic data is missing

- Prevention

: by using narrower beams

 

3) Elevational Resolution Artifact (= Slice-Thickness A., partial volume artifact) [★★★★★]

-

slice thickness artifact 

 

partial volume artifact 

 

- Due to beam width perpendicular to the scan plane.

- Affect imaging quality by displaying anatomic structures (reflectors) in the incorrect imaging plane

- These reflections can cause hollow structures to fill in

- Hindrance

: Causes anechoic structures to have low level echoes or false debris

- Example: false appearance of debris in simple cystic structure

- Prevention

1. Turn on Harmonics

: sound beam in this mode is narrower than in regular gray scale mode

2. Disc Shaped Elements

: Provide the thinnest slices and the best elevational resolution.

3. Newer Transducers

- 1.5-D arrays (multirow array transducer) [★★]

· They create thinnest beams with improved slice-thickness

· Have multiple crystals in an up and down direction

→ focus the beam in the thickness plane

· exhibit least amount of volume averaging

 

4) Contrast Resolution Artifact

- Inability of a gray-scale display to distinguish between echoes of slightly different intensities

: How many Shades of gray can be displayed

- Factoring Components

: With a decreasing number of bits per pixel, less shades of gray appear

- Less shades of gray = worse contrast resolution

- Cause: Not enough bits per pixel in image memory

- Poor contrast resolution

: Image appears more black-and-white, with few shades of gray in between

: Showing less detail

- Hindrance                                                                                                                              

: Fewer bits per pixel = fewer shades of gray = degraded contrast resolution

- Prevention: Usage of B Color

 

5) Spatial Resolution Artifacts

- Spatial resolution pertains to the overall detail produced in an image

- Spatial resolution artifacts are created when display monitor fail to produce adequate image detail

- Factoring Components: Spatial resolution artifacts can be created in a number of ways

1. Pixel Density

- Low pixel density (fewer pixels per inch) → larger pixels

: Larger pixels provide blurry and less detailed images

                              - Higher pixel density (more pixels per inch) → smaller pixels

                                             : Smaller pixels provide better detail, better spatial resolution

                              - pixel density cannot be changed

                              - quality may be improved by write magnification (pre-processing technique)

                                             : sonographer chooses a region of interest (ROI) to magnify

                                             : US rescans the image → greater number of pixels, improves SR

2. Line Density

- Low line density creates less detailed images

- controlled by US system, but can be controlled by the operator

- Modern display are equipped with more lines per page providing better SR

3. Number of horizontal lines in a display monitor. 

- Monitors with less horizontal lines degrade spatial resolution


3. Propagating Speed/Path Artifacts


1) Refraction Artifact (= Lateral misregistration) [★★★★]


refraction artifact lateral misregistration 

 

- bending of sound beam due to different media propagation speeds

- ex) while imaging a cyst: shadowing posterior to each lateral border of cyst

- Causes of Refraction

1. Oblique incidence

2. Difference in propagating speed on either side of the boundary

Snell’s law: sinθt/sinθi = Vt/Vi

- angle of sound transmission at an interface between media with different P.S. 

- Propagating Speed (c) through the 2nd medium > 1st medium

               Transmission angle > Incident angle

- Propagating Speed (c) through the 2nd medium < 1st medium

Transmission angle < Incident angle 


snell's law 


- Hindrance

: Duplication of a reflector / shows a false structure

: Reflector misplacement

- Prevention

: Change angle, artifact shouldn’t be in same place

 

2) Multipath Artifacts [★]

 

multipath artifact 

 

- Artifact created when the pulse is redirected along different paths before returning to the transducer

- The transmit and returning path are not the same

- Causes: Scattering

: Random redirection of sound in many directions

: Occurs with rough surfaces

: Occurs when tissue interface is small compared to the beam

: Boundary is less or equal to the wavelength of incident beam

: independent of the direction of the incident sound 

- Hindrance

: Subtle, nonspecific changes that cannot be identified on an image

: may cause abnormalities of depth or position of a structure

: result in both axial and lateral displacement of reflector

 

3) Mirror Image Artifact

- a second copy of a true object incorrectly appears on the opposite side of a strong reflector

- Observed in all imaging mode [★]

- Characteristics

: Replica of true reflector

: Artifact will appear deeper than true reflector

: “Mirror” is in straight line between artifact and true reflector

: Artifact and true reflector are equidistant from mirror

- Cause

: sound reflects off of a strong reflector and is redirected towards another structure.

Creating a mirror image of the structure on the opposite side of the strong reflector                                      

mirror image artifact 


: Ultrasound will show true object in correct position (arrow showing mass on liver)

: also show a mirror image of the object (hyperechoic duplicate mass below diaphragm in image)

: Artifact will be deeper and behind the strong reflector (curved line-diaphragm)

- same path as true object

: Artifact will be same distance from strong reflector as true object 

- Hindrance

: could mistake mirror image for second object

: unable to correctly view area behind high reflector

- Prevention 

: Change angle of incidence to vary reflectivity of interface

: Adjust focal zone or TGC at level of high reflector causing mirroring to minimize reflectivity

: Scan from multiple windows

: Use spatial compounding

(combining image information from different angles to produce a single image)

 

4) Comet Tail/Ringdown Artifact [★★]

 

comet tail artifact ringdown artifact 

 

- Due to merging of two closely spaced reverberations

- Similar to a reverberation without the spacing

- Associated with resonance of a gas bubble

- Causes

: Two closely placed strong reflectors parallel to beam axis

: Sound wave bounces between the two reflectors eventually returning to the Transducer

: Most common in mediums with very high propagating speeds

- Solid hyperechoic line directed inferiorly

: Unable to differentiate between individual reverberations

: Appears posterior to actual structure

: Parallel to beams axis

- Hindrance

: False reflectors are displayed

: May obscure visualization of structures posterior to reflectors

- Prevention

: Use an alternative window

- Change beam angle

: Decrease TGC in the near gain

 

5) Reverberation Artifact [★★]

-

reverberation artifact 

 

- Multiple equidistant horizontal bands having decreased brightness with depth

: Only the first two are real

- Resulting in a single structure being displayed repeatedly at greater depths

- Causes

: Two strong reflectors parallel to wave axis

: Sound waves bounce between the two reflectors eventually returning to the Transducer

- Creating a longer go return-time

- Causing incorrect reflector placement on display

- Repeated hyperechoic reflections

: Equal increments of space between artifacts

: “Ladder” or “Venetian blind” appearance

- Hindrance

: False reflectors are displayed

: May obscure visualization of structures posterior to reflectors

- Prevention

: Use an alternative window

- Change beam angle

: Decrease TGC in the near gain.

 

* Water-path scanner

- Advantage of water-path scanner

: near-field reverberations are reduced

- Disadvantage of water-path scanner

               : bubbles in the fluid can inhibit sound transmission into the body

 

6) Propagating Speed Error Artifact/Range Error (= Axial misregistration) [★★]

- Created when sound propagates through medium at a rate other than 1540m/s

- Displays the correct number of reflectors at incorrect depths

: Causing misplaced echoes on image

- Causes

: Error in tissue velocity/velocity calibration of system

: Sound traveling at a speed other than 1540 m/s

- Slower than 1540 m/s (ex: large mass composed primarily of fat)

: Longer go return time than machine expects

: Pulses return slowly

: System places reflections at a greater depth (overestimates distance)

- Faster than 1540 m/s

: Shorter go return time than machine expects

: Pulses return very quickly

: System places reflectors at a shallower depth (underestimates distance)

- Displaces true reflections

- Helpful

: Conveys important information on the image

- Can provide tissue texture

- Hindrance

: Inaccurate placement may appear like pathology

- Need to look at in other views to confirm anatomy

- Prevention

: Currently cannot be prevented

: Use alternate viewing window

- Change beam angle

 

7) Focal Banding/Focal Enhancement Artifact

-

focal banding 

 

- Special form of enhancement

: side to side region of an image appears brighter (hyperechoic) than tissues at other depths

- Occurs in the focal region of the transducer when using multiple focal zones

- Cause

: increased intensity due to multiple foci

- Structures at the focus appear brighter than those at other depths

: An entire horizontal region (band) of tissue appears hyperechoic

- Results from increased intensity at the focus

               : same appearance as incorrect TGC setting

- Hindrance

: The brightening of echoes around the focus (intensity increased by narrowing of the beam)

: Higher intensity causes a hyperechoic horizontal band across the display

→ can be mistaken for a mass

- Prevention

: Decrease the number of foci

: Change the location of multiple foci


4. Attenuation Artifacts


1) Shadowing Artifacts [★]

-

shadowing artifact 

 

- The weakening of echoes distal to a strongly attenuating or reflecting structure [★★]

Or from the edges of a refracting structure

- Causes: result of too much attenuation

: A strongly attenuating or reflecting structure weakens the sound distal to it (attenuation)

→ echoes from the distal region are weak and appear less echogenic (like a shadow)

- Hypoechoic/Anechoic area parallel to sound beam

- Hindrance

: May hide or prevent visualization of a deeper structure

: difficult to obtain information about objects in the far field or within the shadow artifact

: Prevents visualization of true anatomy on the scan, resulting in missed information

- Helpful

: May provide valuable diagnostic information

- helps to characterize tissue

- ex) calcified plaques, stiff breast lesions, and stones

- Prevention

: Image structure in several angles to avoid missing information

: use tissue harmonic imaging (which produces thinner beam reducing slice thickness) [#1]

- Shadowing may not be displayed if beam width is greater than calcification

: due to volume averaging  

: To display acoustic shadow

→ beam width ↓ (frequency ↑ and/or improve focusing)

 

2) Enhancement Artifacts [★★★]

-

enhancement artifact 


- The strengthening of echoes from reflections that lie behind a weakly attenuating structure

- A hyperechoic region that extends beneath structures with abnormally low attenuation

- Opposite of shadowing

- Causes

               : Decreased attenuation through a fluid-filled structure

: Tissues with low attenuation (ex: hematomas and abscesses)

- Helpful

: Provide valuable diagnostic information helping to characterize tissue

- Hinder

: Cause blockage and prevent from seeing something important

- Prevention

: Reduced with spatial compounding  

: Several directional approaches allow the beam to get around the attenuating structure


5. Doppler Artifacts


1)  Aliasing [★★]

- High velocities appear negative

- With PW doppler, high velocity measurements are inaccurate

: if the pulsed doppler sampling rate (PRF) is too low in comparison to messed doppler shift

 

 


- Appearance of Doppler spectral information on the wrong side of the baseline

- Most common Doppler artifact

: Only occurs with PW

- Very high velocities in one direction are incorrectly displayed as going the opposite direction

- Causes

               : occurs because frequency-shifted signal is sampled

                              (rather than recorded continuously)

               : inadequately sampled shift results in aliasing

: when the Nyquist limit is surpassed

- Nyquist limit (kHz) = PRF/2 [★★]

: sampling frequency needed for detecting the doppler signal unambiguously

: when PRF cannot be increased to a level greater than 2 times doppler frequency

- Nyquist frequency: The doppler frequency at which aliasing occurs

- Peaks will be displayed on the wrong side of the baseline

- Hindrance

: Yields an incorrect direction and value

: Limited ability to correctly measure deep vessels

 - Prevention

: Increase the PRF (and Nyquist frequency), which will lower the baseline

               - can measure high velocities

                              - increased PRF may introduce range ambiguity

: zero baseline shift

: Increase the Doppler angle

: Use a lower operating frequency, which lowers the Doppler shift and shrink the spectrum

: Use a continuous wave device

                              - Aliasing does not occur in CW doppler [★★]

                                             : no limit in maximum velocity

 

2) Ghosting

ghosting ultrasound artifact 

 

- Form of noise

- The presence of false echo signals coming from outside the main beam

- Causes

: Low frequency Doppler shifts created by slowly moving anatomy

: Slow velocity reflectors

: Need to differentiate between anatomy and moving blood cells

- ex: heart muscle, pulsating vessel walls

- Hindrance

: Gives operator false diagnosis or measurement information

: Could interpret as slow-moving blood cells

- Prevention [★★★]

: Use a wall filter to eliminate low frequency Doppler shifts

: Increase PRFrange ambiguity, less sensitivity to slow flow, reduction of color fill

 


* Slow flow [★★]


No color signal detected within portal vein

slow flow ultrasound 


- color doppler system must be sensitized to detect low frequency shifts

: slow flow produces low frequency shifts

- set PRF lower to increase sensitivity to low frequency shifts

- increasing color doppler transmit frequency

: result in larger frequency shifts from slow flow

                              - improve visibility and sensitivity to slow flow

: decreased penetration to flow in vessels deep within tissues

- Lower the wall filter setting

 

3) Cross talk (spectral mirroring) [★]

-

spectral mirroring 

 

- Identical Doppler spectrum is shown above and below the baseline

- True flow pattern is unidirectional, but flow pattern appears bidirectional on spectrum

               : Spectral Doppler appears on both top and bottom

- Causes

: Equipment malfunction (poorly designed)

: Doppler gain is set too high

: Incident angle is near 90 degrees (between sound beam and flow direction)

- Doppler shifts cannot be obtained perpendicular to the beam

: Operator error

- Hindrance

: Spectral analysis is giving a false information

- Prevention

: Change angle of the transducer

: Apply gel (coupling medium)

: Fix Doppler gain

 

4) Twinkle artifact

 

ultrasound twinkle artifact 

 

- Phenomenon with unclear underlying causes that appears as a rapid alternation of color

- Immediately behind a stationary echogenic object, giving it a false appearance of movement

- Hindrance

: False appearance of movement

- Helpful

: Useful in detection of certain clinical conditions

- Ex: Urolithiasis (twinkle sign → positive reading that a stone is present)

: Can enhance accuracy and sensitivity

- Prevention

: Not having very strong scatters

: Eliminating the phase detection process

: Unfortunately, the operator has no control over these things

 

5) Flash artifact

 

ultrasound flash artifact 

 

- high-amplitude, low-frequency shift signal

- reduced by increasing wall filter

               : reduces sensitivity to low frequency shifts ass/w slow flow

 

Reference

 

* Davies Ultrasound Physics review

* https://sites.google.com/site/lindadmsportfolio/ultrasound-physics/

* https://sites.google.com/site/nataljasultrasoundphysics/

* https://sites.google.com/site/ektasphysicseportfolio/doppler




+ Recent posts